Matrix Computational Assumptions in Multilinear Groups

نویسندگان

  • Paz Morillo
  • Carla Ràfols
  • Jorge Luis Villar
چکیده

We put forward a new family of computational assumptions, the Kernel Matrix DiffieHellman Assumption. Given some matrix A sampled from some distribution D, the kernel assumption says that it is hard to find “in the exponent” a nonzero vector in the kernel of A>. This family is the natural computational analogue of the Matrix Decisional Diffie-Hellman Assumption (MDDH), proposed by Escala et al. As such it allows to extend the advantages of their algebraic framework to computational assumptions. The k-Decisional Linear Assumption is an example of a family of decisional assumptions of strictly increasing hardness when k grows. We show that for any such family of MDDH assumptions, the corresponding Kernel assumptions are also strictly increasingly weaker. This requires ruling out the existence of some black-box reductions between flexible problems (i.e., computational problems with a non unique solution).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakening Assumptions for Deterministic Subexponential Time Non-Singular Matrix Completion

Kabanets and Impagliazzo [KI04] show how to decide the circuit polynomial identity testing problem (CPIT) in deterministic subexponential time, assuming hardness of some explicit multilinear polynomial family {fm}m≥1 for arithmetic circuits. In this paper, a special case of CPIT is considered, namely non-singular matrix completion (NSMC) under a low-individual-degree promise. For this subclass ...

متن کامل

Multilinear Maps Using a Variant of Ring-LWE

GGH13, CLT13 and GGH15 of multilinear maps suffer from zeroizing attacks. In this paper, we present a new construction of multilinear maps using a variant of ring-LWE (vRLWE). Furthermore, we also present two new variants of vRLWE, which respectively support the applications of multipartite key exchange and witness encryption. At the same time, we also present a new variant of GGH13 using matri...

متن کامل

Compact Attribute-Based Encryption and Signcryption for General Circuits from Multilinear Maps

Designing attribute-based systems supporting highly expressive access policies has been one of the principal focus of research in attribute-based cryptography. While attribute-based encryption (ABE) enables fine-grained access control over encrypted data in a multi-user environment, attribute-based signature (ABS) provides a powerful tool for preserving signer anonymity. Attributebased signcryp...

متن کامل

Indistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs

Two recent works [Lin, EUROCRYPT 2016, Lin and Vaikuntanathan, FOCS 2016] showed how to construct Indistinguishability Obfuscation (IO) from constant degree multilinear maps. However, the concrete degrees of multilinear maps used in their constructions exceed 30. In this work, we reduce the degree of multilinear maps needed to 5, by giving a new construction of IO from asymmetric L-linear maps ...

متن کامل

Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications

The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within P. In this paper, we study the algebraic formula complexity of multiplying d many 2×2 matrices, denoted IMMd, and show that the well-known divide-andconquer algorithm cannot be significantly impro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015